Анаэробы (греческий отрицательная приставка an-, aer — воздух и bios — жизнь) — бактерии, не требующие для своего существования и размножения свободного кислорода.
В 1861 году Пастер впервые доказал, что некоторые дрожжи и бактерии могут существовать и размножаться только при отсутствии воздуха (см.Анаэробиоз). Они были названы Пастером анаэробами.
Бактерии удовлетворяют свои потребности в энергии за счет сопряженных окислительно-восстановительных реакций, в ходе которых водород переносится от донатора к акцептору. У анаэробов акцепторами водорода являются промежуточные продукты расщепления углеводов и белков, а у аэробов акцептором водорода может быть кислород. Эти реакции протекают ступенчато от системы более высокого окислительно-восстановительного потенциала к системе с более низким потенциалом. Перенос водорода от донатора к акцептору осуществляется четырьмя дегидрогеназами, причем в трех случаях в этом переносе в качестве акцепторов водорода участвуют пиридиннуклеотиды и только в случае сукцинатдегидрогеназы водород непосредственно переносится на флавопротеид (ФАД). По отношению к кислороду анаэробы разделяются на две группы: факультативные и облигатные.
Факультативные анаэробы размножаются как в аэробных, так и в анаэробных условиях, в последнем случае в качестве акцептора водорода используют легко восстанавливающиеся элементы и соединения. Например, многие анаэробные бактерии растут без кислорода, используя в качестве конечного акцептора электронов нитраты (нитратное дыхание). В этом случае, как показано Назоном (A. Nason, 1962) у E. coli, перенос электронов осуществляется нитратредуктазой. У Cl. aceticum в качестве акцептора электрона служит углекислота. В анаэробных условиях метаболизм факультативных анаэробов протекает по типу брожения, и субстрат полностью не окисляется. В присутствии кислорода происходит полное окисление субстрата, в результате чего высвобождается большое количество энергии и рост бактерий становится более интенсивным.
Облигатные анаэробы не способны усваивать кислород, в присутствии его они погибают. У одних облигатных анаэробов, включая представителей рода Clostridium, отсутствуют цитохромы, цитохромоксидазы, то есть не происходит перенос водорода к кислороду. У других же анаэробов цитохромоксидазы, которые переносят на молекулу кислорода два водородных иона, имеются,но это приводит к образованию перекиси водорода, токсичной для бактерий.Расщепление последней в клетке с выделением воды осуществляется двумя ферментами — каталазой и пероксидазой. В их отсутствие концентрация перекиси водорода достигает уровня, убивающего клетку. Поэтому облигатные анаэробы можно культивировать только в среде, лишенной кислорода.
Некоторые анаэробы, не имеющие ката лазы и цитохромов, могут в присутствии донаторов электронов — флавопротеинов — катализировать восстановление перекиси водорода до воды, в связи с этим перекись водорода у них не накапливается и не наступает гибель в присутствии кислорода.
Анаэробы играют большую роль в круговороте веществ, участвуя в разложении органических остатков растительного и животного происхождения без доступа воздуха или при затрудненном притоке его. При участии анаэробов происходят процессы гниения в глубоких слоях почвы, в болотах, в иле, в навозных кучах. Анаэробы присутствуют в кишечнике человека и животных, участвуя в разложении растительной клетчатки. В среде, хорошо доступной для воздуха, анаэробы принимают участие в разложении различных веществ совместно с аэробами, так как последние поглощают кислород.
- Анаэробы рода Clostridium
-
Рис. 1. Колонии столбнячной палочки (на агаре с мартеновским бульоном) с неровной, выпуклой зернистой поверхностью с отростками (? 10)
-
Рис. 2. Морфология барабанных палочек Cl. tetani (окраска по Граму; ? 1900)
-
Рис. 3. Зона гемолиза вокруг колонии Cl. botulmum А на агаре с кровью (? 8)
-
Рис. 4. Клетки Cl. Botulinum А (окраска по Граму; ? 1900)
-
Рис. 5. Морфология колонии Cl. brfulmff В на печеночном агаре (? 10)
-
Рис. 6. Морфология палочек Cl. botulinum В (окраска по Граму; ? 1900)
-
Рис. 7. Колонии Cl. botulinum C на агаре с бульоном Хоттингера (? 5)
-
Рис. 8 Морфология палочек и ракеток Cl. botulinum C (окраска фуксином; ? 1900)
-
Рис. 9. Колонии Cl. botulinum E на агаре с бульоном Хоттингера (? 5)
-
Рис. 10. Морфология ракеток Cl. botulinum E (окраска по Граму; ? 1900)
-
Рис. 11. Колонии Cl. botulinum F на агаре с бульоном Хоттингера, выделенных из помета водоплавающих птиц с птичьего базара Баренцева моря (? 1900)
-
Рис. 12 Морфология палочек и ракеток Cl. botulinum F, выделенных из помета водоплавающих птиц (окраска по Граму; ? 1900)
-
Рис. 13. Морфология клеток Cl. perfringens А из колоний на кровяном агаре (окраска фуксином; ? 1900)
-
Рис 14. Колонии Cl. perfringens B на агаре с бульоном Хоттингера (? 10)
-
Рис. 15. Морфология спор и палочек Cl. perfringens В в песке (окраска фуксином; ? 1900)
-
Рис. 16. Колонии Cl. perfringens D на агаре с бульоном Хоттингера (? 10)
-
Рис. 17. Морфология палочек Cl. perfrinlgens D (окраска по Граму; ? 1900)
-
Рис. 18. Капсула у Cl. perfringens А окрашивает клетку микроба в виде светлой полоски. Мазок из печени морской свинки, погибшей от анаэробной инфекции (окраска фуксином; ? 1000)
-
Рис. 19. Колонии Cl. perfringens A на кровяном агаре окружены зоной гемолиза (натуральная величина)
-
Рис. 20. Колонии Cl. oedematiens A на печеночном агаре (? 32)
-
Рис. 21. морфология палочек Cl. oedematiens А со жгутиками (окраска по М. А. Морозову; ? 1000)
-
Рис. 22. Колонии Cl. septicum на печеночном агаре через сутки после посева (? 32)
-
Рис. 23. Морфология клеток Cl. septicum (окраска фуксином; ? 1900)
-
Рис. 24. Cl. septicum в виде длинных нитей в печени морской свинки, погибшей от анаэробной инфекции (окраска по Граму; ? 1800)
-
Рис. 25. Колонии Cl. sordelli на агаре (? 10)
-
Рис. 26. Морфология клеток Cl. sordellii (окраска фуксином; ? 1900)
-
Рис. 27. Колония Cl. histolyticum на кровяном агаре (? 64)
-
Рис. 28. Морфология Cl. histolyticum окраска фуксином; ? 1900)
По Берги (D. H. Bergey, 1957), факультативными или облигатными анаэробами являются 93 вида спорогенных бактерий рода Clostridium, из которых более 10 видов патогенны для человека и животных. Эти бактерии (рис. 1—28) вызывают у людей следующие заболевания: Cl. tetani — столбняк (см.), Cl. botulinum — ботулизм (см.), Cl. perfringens, Cl. oedematiens, Cl. septicum, Cl. histolyticum, Cl. sordellii, Cl. fallax, Cl. chauvoei, Cl. sporogenes — анаэробную инфекцию (см.).
К облигатным или факультативным анаэробам принадлежат и многие неспорогенные бактерии, грибки, а также трепонемы.
По классификации Берги (1957), к анаэробам относятся девять родов: Bacteroides, Fusobacterium, Sphaerophorus, Corynebacterium, Peptostreptococcus, Peptococcus, Actinomyces, Dialister, Lactobacillus bilidus, всего 92 вида микроорганизмов.
Морфология неспорогенных анаэробов (Прево, Тюрпен, Кайзер). Рис. 1. Bacteroides. Рис. 2. Fusobacterium. Рис. 3. Sphaerophorus. Рис. 4. Corynebacterium. Рис. 5. Peptostreptococcus. Рис. 6. Peptococcus. Рис. 7. Actinomyses. Рис. 8. Dilalister Рис. 9. Lactobacillus bifermentans
По классификации Прево (A R Prevot, 1955, 1967), неспорогенные анаэробы (цветные табл., рис. 1—9) разделяются на 21 род, содержащий ИЗ видов, из которых более 33 видов патогенны для человека и животных. Особенно много патогенных видов анаэробов для человека среди родов Bacteroides, Sphaerophorus, Corynebacterium, Streptococcus, Staphylococcus, Actinomyces и другие. Неспорогенные анаэробы вызывают у человека гнойный плеврит, абсцесс легкого, послеродовой сепсис, послеабортный сепсис, инфицирование огнестрельных ран, перитонит, септицемию, абсцесс почек, мозга, печени, хронический колит и другие заболевания,
Многие виды неспорогенных анаэробов являются облигатными анаэробами. Выделение их из организма человека и животных весьма затруднено; при первых же пересевах на специальные среды они погибают от кислорода. Поэтому Хангейт (R. E. Hungate, 1950) предложил облигатных анаэробов пересевать и культивировать на восстановленных средах в атмосфере азота.
Для выращивания анаэробов предлагалось много различных способов, обеспечивающих удаление кислорода из среды культивирования. Широко применяют аппараты, которые после удаления воздуха заполняют азотом (см.Анаэростат). Для поглощения кислорода при выращивании анаэробов предложены химические средства (например, смесь пирогалловой кислоты с раствором NaOH или КОН).
Простой способ ограничения доступа воздуха в среду для анаэробов — использование высокого слоя среды. Жидкую среду наливают в высокие сосуды (бутыли, высокие пробирки, флаконы), покрывают до стерилизации или после нее жидким вазелином, стерилизуют, перед посевом кипятят 20—30 минут для удаления воздуха, быстро охлаждают и вносят посевной материал на дно сосуда. Для создания условий роста анаэробов в среду вносят восстанавливающие вещества: глюкозу, аскорбиновую кислоту, муравьинокислый натрий, кусочки свежих тканей, вещества, содержащие SH-группу (тиогликолевую кислоту, цистеин, глутатион и другие), кусочки паренхиматозных органов животных, растительные ткани, культуры убитых дрожжей. Эти вещества должны вводиться в количествах, не угнетающих рост анаэробов.
Для выделения чистой культуры анаэробов применяют метод Виньяля—Вейона. Пробирки (пипетки) длиной 20—30 см, диаметром 6—7 мм заполняют на 15—20 см прозрачным 1—1,5% агаром. Перед посевом агар расплавляют, остужают до t° 40—50°, необломанную пастеровскую пипетку погружают в посевной материал, а затем вносят его поочередно в 5—7 пробирок (пипеток), агар быстро охлаждают. В глубине агара вырастают отдельные колонии анаэробов в виде хлопьев, которые извлекают тонкой пипеткой либо разрезают пробирку (пипетку) и также достают отдельные колонии пастеровской пипеткой. Можно немного подогреть пробирку с агаром и перенести столбик в чашку Петри. Отдельные колонии пересевают на жидкие среды. Чистую культуру анаэробов получают по методу Л. Г. Перетца, для чего запаянную пастеровскую пипетку предварительно погружают в посевной материал, а затем вносят поочередно в три пробирки, содержащие остуженный агар. К агару добавляют 2—4 капли 10% гипосульфита натрия на 10% растворе углекислой соды или 0,1 мл 8% раствора аскорбиновой кислоты на 10% растворе углекислой соды. Каждую пробирку выливают в стерильную чашку Петри, на дне которой лежит стекло размером 6?6 см на спичках или кусочках стекла. Агар с посеянным анаэробом затекает под стекло, где вырастают отдельные колонии. Эти колонии можно пересеять на жидкую среду.
См. такжеБактерии.
Виблиогр.: Матвеев К. И. Ботулизм М., 1959, библиогр.; он же, Эпидемиология и профилактика столбняка, М., 1960; Матвеев К. И. и Волгин Ю. Б. Анаэробная инфекция, Многотомн. руководство по микр., клин, и эпид. инфекц бол., под ред. Н. Н. Жукова-Вережникова, т. 7, с. 565, М., 1966; Мельников В. Н. и Мельников Н. И. Анаэробные инфекции, М., 1973, библиогр.; Bergey’s manual of determinative bacteriology, ed. by R. S. Breed а. о Baltimore, 1957; Prevot A. R. Biologic des maladies dues aux anaerobies, P., 1955; Prevot A. R., Тurpin A. et Kaiser P. Les bacteries anaerobies, P., 1967.
К. И. Матвеев.
^
Источник: Большая Медицинская Энциклопедия (БМЭ), под редакцией Петровского Б.В., 3-е изданиематрица судьбы запросы