ГИСТАМИН (бета-имидазолин-4(5)-этиламин) — биогенный, физиологически активный гетероциклический амин, C5H9N3; участвует в осуществлении аллергических реакций в качестве медиатора, используется как лекарственное средство. Структурная формула:
Синтезирован в 1907 г. из имидазолпропионовой к-ты А. Виндаусом и Фогтом (W. Voght). В 1909 г. Г. Дейл и Лейдлоу (P. Laidlaw) извлекли гистамин из спорыньи.
В организм человека и животных Г. в незначительных количествах (менее 5%) поступает с пищей (напр., молоко содержит его 0,5 мкг/мл, мясо — 0,5 мкг/г, хлеб — 0,1 мкг/г). Часть Г. образуется в кишечнике изгистидина (см.) под влиянием бактериальной гистидиндекарбоксилазы (КФ 4. 1. 1. 22). Избыточное поступление гистидина с пищей (напр., при преимущественно мясной диете) активирует бактериальную гистидиндекарбоксилазу. Избыток образовавшегося при этом Г. выводится с мочой. Гистамин, образующийся в кишечнике, называют экзогенным (см. схему).
Схема образования и метаболизма гистамина
Большая часть Г. синтезируется в клетках организма путем декарбоксилирования гистидина тканевой гистидиндекарбоксилазой. Ее коферментом является пиридоксаль-5′-фосфат, сильным ингибитором — альфа-метилгистидин. Г., образованный в клетках, называют эндогенным гистамином.
Почти все органы человека и животных содержат Г. Количество его сильно варьирует в разных тканях и у разных видов животных: в легких обезьян до 100 мкг/г, в коже человека ок. 30 мкг/г (А. Д. Адо, 1970). В мозге больше всего Г. обнаруживают в гипоталамусе и гипофизе. Мало его в таламусе, продолговатом и спинном мозге. Основная масса Г. в тканях находится в неактивном состоянии в виде лабильных комплексов с белками, гепарином, сернокислыми полисахаридами, нуклеиновыми к-тами, фосфатидами. Различают две формы депонирования связанного Г. Первая — депонирование в тучных клетках соединительной ткани, где связь Г. с белково-гепариновым комплексом относительно устойчива и освобождение его происходит под влиянием определенных веществ, так наз. либераторов. Вторая форма — депонирование в тканях, бедных тучными клетками, в клетках самого органа, напр, в легких, слюнных железах, слизистой оболочке желудка. Эти органы обычно имеют высокую гистаминообразующую способность, и Г. освобождается из клеток под влиянием физиол, стимулов, напр, под влиянием раздражения холинергических нервных волокон. В крови Г. преимущественно связан с гранулами базофилов и эозинофилов, часть Г. может образовывать комплекс с гамма-глобулинами. Небольшие количества Г. постоянно находятся в крови и других биол, жидкостях В свободном состоянии. Содержание свободного Г. в цельной крови здоровых людей колеблется, по данным разных авторов, от 20 до 100 нг/мл, а в плазме от 0 до 5 нг/мл. При различных патол, процессах содержание свободного Г. в крови может резко увеличиться. Однако высокой фармакол, активности свободного Г. противодействуют механизмы его разрушения в организме и выведение его метаболитов с мочой (см. схему).
Основными путями инактивирования Г. в организме являются окислительное дезаминирование с помощью пиридоксалевого фермента гистаминазы (см.Диаминоксидаза) с образованием имидазолуксусной к-ты и рибозида имидазолуксусной к-ты и метилирование имидазольного кольца Г. с помощью гистамин-метилтрансферазы (КФ 2. 1. 1. 8). Метил гистамин является основным метаболитом Г. у многих видов животных и человека. Часть образованного метилгистамина выводится непосредственно с мочой, часть окисляется моноаминоксидазой (КФ 1. 4. 3. 4) и выводится в виде 1-метилимидазол-4-уксусной к-ты. Таков же путь нейтрализации Г. в тканях мозга. Нейтрализация Г. может осуществляться также с помощью ацетилирования, к-рое происходит при участии ацетилирующего фактора, скорее всего являющегося КоА. Этот путь нейтрализации Г. не имеет большого значения в тканях теплокровных животных, ацетилирование Г. происходит, в основном, в кишечнике под влиянием кишечной флоры; образующийся ацетилгистамин выводится с мочой.
Физиол, роль Г. не совсем ясна и продолжает изучаться. Действие Г. проявляется на месте его образования и освобождения. Физиол, активностью в наибольшей степени обладает эндогенный Г., образующийся вне тучных клеток [по терминологии Шайера (R. Schayer, 1968), «индуцированный» Г.]. В жел.-киш. тракте, по данным Броди (В. Brodie, 1966), Г. играет роль гуморального посредника в секреции слизи, пищеварительных ферментов и соляной к-ты. А. М. Чернухом установлена роль Г. в регуляции микроциркуляции и поддержании гомеостаза. Г. участвует в передаче нервного импульса. Есть сведения об участии Г. в регуляции процессов роста (эмбрионального роста, регенерации тканей).
Гистамин как медиатор аллергических реакций
Г. участвует в реализации патохимических и патофизиол. стадий аллергических реакций.
Повышение содержания свободного Г. в крови и лимфе грудного протока при анафилактическом шоке показали впервые Фелдберг (W. Feldberg, 1932) и Драгстедт (С. Dragstedt, 1932). С тех пор этот факт подтвержден многочисленными экспериментами и клин, исследованиями и стал основным доказательством так наз. гистаминной теориианафилаксии (см.) иаллергии (см.). В пользу этой теории говорили и следующие факты: Г., введенный животным извне, вызывает состояние, схожее с анафилактическим шоком, оказывает на изолированные гладко-мышечные органы животных (тонкая кишка, рог матки, ткани бронхов) такое же действие, как и специфический аллерген, т. е. вызывает анафилактическую контрактуру, к-рую снимают антагонисты Г.; после перенесения анафилактического шока в тканях уменьшается число тучных клеток, являющихся основными депо связанного Г.
В то же время есть и факты, противоречащие признанию Г. в качестве универсального медиатора анафилаксии. Напр., шок, возникающий при введении Г. в кровь животных, не всегда идентичен анафилактическому; антагонисты Г., предупреждающие развитие гистаминового шока, не всегда и не в полной мере снимают анафилактический шок; при анафилактическом шоке из тканей освобождается не только Г., но и другие биологически активные вещества: гепарин, серотонин, медленно реагирующая субстанция [Остин (К. F. Austen), 1974], кинины; некоторые сенсибилизированные ткани (нервная, гладкие мышцы) возбуждаются аллергеном непосредственно, без участия Г. как промежуточного звена; гистаминовый шок не сопровождается десенсибилизацией животного к последующему введению Г., как это наблюдается при анафилактическом шоке; при анафилактическом шоке свертываемость крови снижается, а Г. ее повышает (А. Д. Адо, 1970).
Таким образом, Г. не является универсальным медиатором для всех случаев аллергии, но играет роль важного промежуточного ’эвена при многих аллергических реакциях. Известно участие Г. в механизме некоторых аллергических заболеваний человека (атопической и инфекционно-аллергической бронхиальной астмы, крапивницы, отека Квинке, поллинозов, аллергического риносинусита, дерматозов и т. д.), сопровождающихся изменением содержания Г. в крови, изменением активности гистаминазы и других ферментов, разрушающих Г., и появлением Г. и его метаболитов в моче в большем против нормы количестве [Э. Райка (E. Rajka), 1966; И. Л.Вайсфельд, 1969; Т. С. Соколова, 1971].
Роль Г. в реакциях при аллергии замедленного типа неясна. Однако Шильд (H. О. Schild, 1967), H. Д. Беклемишев (1968) и др. считают возможным участие Г. в некоторых ее проявлениях, напр, в туберкулиновой реакции и контактном дерматите. Обнаружены колебания содержания связанного Г. в тканях и усиление гистаминообразующей способности кожи. Но явления эти кратковременны и обнаруживаются преимущественно в ранние сроки, когда клеточные и тканевые реакции еще не успели развернуться. Шайер (1963) считает, что усиление образования Г. при замедленной аллергии происходит в результате действия гистидин декарбоксил азы, обеспечивающей появление так наз. «индуцированного» Г. (по терминологии Шайера), действие к-рого направлено на регуляцию микроциркуляции и поддержание т. о. в тканях необходимого количества крови.
Увеличение содержания Г. в сенсибилизированных тканях за счет усиления его образования из гистидина хорошо известно и в реакциях немедленной аллергии [Кальсон (G. Kahlson) и соавт., 1964]. Гистаминообразующая способность в сенсибилизированных тканях по сравнению с нормальными повышается с различной интенсивностью и скоростью. В легких, печени и коже максимум образования Г. наблюдается через 3—6 час. после действия аллергена, в селезенке и кишечнике — через 24 часа и более. Образование Г. может продолжаться многие часы, а то и дни. Количество образовавшегося Г. не зависит от насыщенности органа тучными клетками. В аорте, где их мало, Г. образуется столь же интенсивно, как и в коже, где тучных клеток много.
Новообразующийся Г. физиологически лабилен, легко высвобождается из места образования и обнаруживается в жидкостях организма. Метаболиты его выводятся с мочой.
Другим источником свободного Г. в жидких средах организма является его высвобождение из связанного состояния в тучных клетках соединительной ткани и базофилах крови, в которых депонирована большая часть запасов Г. организма. В тучных клетках, напр., его содержится 20—30 мкг на 106 клеток; из тучных клеток и базофилов Г. освобождается под действием либераторов. Патон (W. Paton, 1958), Б. Альперн (1973) делят либераторы Г. на две группы: низкомолекулярные вещества (моноамины, диамины, диамидины, замещенные ароматические амины, аммоний, d-тубокурарин, морфин и др.) и высокомолекулярные (декстраны, овомукоиды, пептоны, поливинилпирролидин, вещество 48/80, Твин-20, полимиксин, протеолитические ферменты, яды и токсины, комплексы антиген—антитело). Свойствами либераторов обладают многие белки, в т. ч. белки сыворотки крови.
При действии либераторов на клетки происходит выброс гранул (единичных или массами) из клетки (дегрануляция) и выход из них Г. и других биологически активных веществ (гепарина, серотонина, протеаз).
По механизму действия либераторы Г. разделяют [Стануорт (D. R. Stanworth), 1974] на неизбирательные (цитотоксические) агенты, напр, октиламин, дециламин, хлорпромазин, Тритон Х-100, мелиттин, и избирательные (нецитотоксические) агенты, напр, вещество 48/80, комплекс антиген — антитело, некоторые полипептиды с основными свойствами и пр. Вещества второй группы вызывают высвобождение Г. без разрушения тучных клеток. На это указывает отсутствие выхода ионов К+ и внегранулярных цитоплазматических включений (АТФ, лактатдегидрогеназы) из тучных клеток при высвобождении из них Г., вызванном специфическим антигеном, а также сохранение мембранного потенциала тучных клеток и отсутствие поступления в цитоплазму за пределы цитоплазматической мембраны и перигранулярных мембран внеклеточных маркеров (гемоглобина и лантана).
Многие либераторы Г. представляют собой соединения со свойствами оснований. Считают (Стануорт, 1974), что если положение и чередование основных группировок в молекуле либератора соответствует положению и чередованию свободных группировок с кислотными свойствами (карбоксильных групп) на мембране тучной клетки, то это приводит к их взаимодействию, что и является толчком, активирующим клетку. В том участке Fc-фрагмента молекулы антитела, который открывается после соединения с антигеном и который имеет отношение к активации клетки, последовательность аминокислотных остатков с основными свойствами сходна с последовательностью основных группировок в других либераторах Г.
Высвобождение Г., вызванное нецитотоксическими либераторами, является активным (энергетически зависимым) процессом, протекающим с затратой энергии, обеспечиваемой АТФ, который образуется в тучных клетках за счет как аэробного, так и анаэробного путей энергетического обмена. Поэтому истощение запасов АТФ и связанное с этим торможение высвобождения Г. может быть достигнуто при условии одновременного ингибирования дыхания и гликолиза. На высвобождение Г. расходуется до 20% общего количества АТФ в тучных клетках [Диамант (В. Diamant), 1975]. Конкретные пути использования АТФ для высвобождения Г. пока неизвестны. Считают, что АТФ затрачивается на обеспечение продвижения гранул по системе микроканальцев к клеточной поверхности. Однако прямых доказательств существования в тучных клетках этой системы нет.
Начальным этапом активации тучных клеток образующимся на их поверхности комплексом антиген — антитело является активация клеточных серин-эстераз при участии ионов Са2+. Высвобождение Г., вызванное антигеном, зависит от системы циклического 3′,5′-аденозинмонофосфата (цАМФ): увеличение его содержания в клетках тормозит, а снижение усиливает высвобождение Г. Роль цАМФ не является универсальной во всех видах нецитотоксического высвобождения Г.: вещество 48/80 высвобождает Г., действуя в обход системы цАМФ [Фредхольм (В. Fredholm) и соавт., 1976].
Ионы Ca2+ необходимы для активации не только начальных, но и более поздних этапов реакции, следующих за энергетически зависимым этапом и состоящих в продвижении гранул к клеточной мембране и в выводе их за пределы клетки (процесс дегрануляции).
Повышение проницаемости общей цитоплазматической мембраны и сливающихся с ней перигранулярных мембран приводит к поступлению в пространства, окружающие гранулы, внеклеточных ионов. Внеклеточные катионы, гл. обр. ионы Na+, вытесняют Г. с гранулярного матрикса, представляющего собой гепариново-белковый комплекс, обладающий свойствами слабого катионита (Б. У внес, 1970). Т. о., Г. высвобождается не только из гранул, покинувших клетку, но также из остающихся в пределах клетки гранул, к к-рым появился доступ внеклеточных катионов. Каким бы способом (цитотоксическим или нецитотоксическим) не было вызвано поступление внеклеточных катионов в перигранулярные пространства, снятие Г. с гранулярного матрикса осуществляется однотипно — по механизму катионообменного процесса.
Механизм высвобождения Г. из базофилов, вызванного специфическим антигеном или аллергеном, принципиально сходен с механизмом его высвобождения из тучных клеток. Этот процесс может рассматриваться как активная реакция живых клеток на специфический раздражитель. Для обеспечения выхода Г. из сенсибилизированных лейкоцитов человека достаточно добавить всего несколько пикограммов (10-12 г) соответствующего аллергена, что свидетельствует о высокой иммунной специфичности этой реакции.
Свободный Г., освободившийся из гранул тучных клеток, или новообразованный в других тканях, проникая в жидкие среды организма, вызывает общие и местные реакции. Наиболее типично общая реакция проявляется в коллапсе, или в «гистаминовом шоке», возникающем при недостаточности механизмов нейтрализации свободного Г. Характерными для аллергии формами местной реакции на Г. являются бронхоспазм и кожная реакция, описываемая как «тройная реакция» или «тройной ответ» Льюиса (1924): 1) местное расширение капилляров и появление красноты; 2) распространение эритемы в результате расширения соседних артериол; 3) образование волдыря вследствие увеличения проницаемости сосудов кожи. 1-я и 3-я фазы реакции обусловлены непосредственным действием Г. на капилляры, 2-я фаза обусловлена действием ацетилхолина, выделяющегося рефлекторно при раздражении Г. сенсорных волокон задних корешков спинного мозга.
Клин, проявления аллергии, обусловленные высвобождением из тканей Г., могут быть в какой-то мере уменьшены введением антагонистов Г. (см.Антигистаминные вещества). Механизм их действия различен: они могут тормозить высвобождение Г. из клеток, блокировать гистаминрецепторы на поверхности эффекторных клеток или обладать конкурентным действием по отношению к Г. См. такжеМедиаторы аллергических реакций.
Гистамин как препарат
Histamini dihydrochloridum; син.:Eramin, Ergamine, Histalgine, Histodol, Istal, Peremin.
Выпускается в виде кристаллического Г. фосфата или дигидрохлорида. Хорошо растворим в воде. На месте введения Г. появляется покраснение, обусловленное расширением капилляров, и образуется папула в результате повышения проницаемости капилляров и отека тканей; возникает ощущение зуда, боль, обусловленные раздражением окончаний чувствительных нервов.
При введении per os Г. малоактивен, т. к. разрушается гистаминазой жел.-киш. тракта. При парентеральном введении Г. специфически стимулирует функцию секреторных клеток пищеварительных, бронхиальных, слезных желез и усиливает отделение желчи. Особенно сильно Г. повышает образование желудочного сока, являясь мощным стимулятором секреторной деятельности обкладочных клеток желудка, выделяющих соляную к-ту. Г. повышает тонус (вплоть до спазма) и усиливает сокращения мышц бронхов и тонкого кишечника. У большинства животных и у человека Г. вызывает понижение АД в результате расширения капилляров, повышения их проницаемости и, как следствия этого, уменьшения массы циркулирующей крови. Расширение капилляров является результатом вызываемого Г. паралича прекапиллярных сфинктеров. Действие Г. связывают с его влиянием на гистаминчувствительные рецепторы клеток. Г. вызывает также задержку крови в венах печени и легких с уменьшением притока крови к правому или левому сердцу, вследствие чего также уменьшается количество циркулирующей крови.
В клинике Г. применяют для диагностикифеохромоцитомы (см.): внутривенное введение 0,025—0,05 мг Г. через 1—5 мин. вызывает у больных кратковременное повышение АД на 40/25 мм рт. ст., сопровождающееся повышением концентрации адреналина в крови. У части здоровых лиц Г. вызывает аналогичный феномен.
Гистаминовую пробу проводят в предоперационном периоде для определения состояния кровообращения и секреторной способности желудочных желез.
Как лекарственное средство Г. имеет ограниченное применение. Г. иногда пользуются при полиартритах, суставном и мышечном ревматизме: внутрикожное введение дигидрохлорида или фосфата Г. (0,1— 0,5 мл 0,1% р-ра), втирание мазей, содержащих Г., и электрофорез Г. вызывают сильную гиперемию и уменьшение болезненности; при болях, связанных с поражением нервов, при радикулитах, плекситах и т. п., при этом препарат вводят внутрикожно (0,2—0,3 мл 0,1% р-ра). Применение Г. противопоказано при менструациях, ангине, лихорадочных состояниях. При передозировке возможен коллапс (гистаминовый шок).
Форма выпуска: ампулы, содержащие Г. от 0,01 до 10 мкг и от 15 до 50 мкг.
Тест специфического высвобождения гистамина
Метод выявления специфической сенсибилизации организма основан на освобождении гистамина из лейкоцитов крови больного после добавления к ним специфического аллергена.
Тест используется с научно-исследовательскими целями для выявления атопической сенсибилизации (см.Атопия), приполлинозах (см.),пищевой аллергии (см.) илекарственной аллергии (см.), а также для контроля эффективности специфической гипосенсибилизации (см.Гипосенсибилизация). Предложен в 1964 г. Л. Лихтенстайном и Ослером (A. G. Osier). Существенный недостаток метода — использование большого объема крови (100 мл). В 1970 г. Мей (Ch. D. May) с сотр. несколько изменили метод, что позволило уменьшить объем крови до 10 мл.
IgE-антитела, накапливаясь в крови больных атопическими заболеваниями, фиксируются гл. обр. на базофилах, к-рые содержат большую часть гистамина крови. Фиксированные IgE-антитела выполняют функцию рецептора для специфического аллергена, обусловливая явление сенсибилизации. В результате реакции аллерген — антитело из базофилов высвобождаются медиаторы, в т. ч. и гистамин (см.Медиаторы аллергических реакций). Т, о., с помощью этого теста можно косвенно судить о присутствии на поверхности лейкоцитов клеточно-фиксированных IgE-антител и о степени чувствительности больного к данному аллергену. Это имеет большое значение в клинике аллергических заболеваний, т. к. одной из причин возникновения атопического заболевания и его обострения является повышение количества клеточно-фиксированных IgE-антител.
Тест включает три основных этапа: получение отмытой суспензии функционально-активных лейкоцитов из крови больных, инкубацию суспензии лейкоцитов (в течение 1 часа при pH 7,35 и температуре 37°) с различными концентрациями аллергенов и определение флюориметрическим или изотопным методом концентрации Г. отдельно в надосадочной жидкости и в лейкоцитах. Экстракты используемых при этом аллергенов не должны содержать фенола, к-рый обладает неспецифическим гистаминвысвобождающим действием. Кроме того, неочищенные экстракты обладают неспецифической токсичностью, а употребление высоких концентраций нек-рых экстрактов вызывает неспецифическое высвобождение Г. из лейкоцитов. При этом каждый исследуемый антиген оттитровывают на лейкоцитах здоровых доноров. Для этого используют аллергены в убывающих разведениях. Аллергены в концентрациях, не вызывающих освобождение Г., могут быть использованы для теста с лейкоцитами больных. В качестве контроля на специфичность к суспензии лейкоцитов добавляют аллерген, к к-рому больной не обнаруживал сенсибилизации. Концентрацию высвобожденного Г. выражают в процентах от общего содержания Г. в пробе.
При инкубации со специфическим аллергеном лейкоцитов больных атоническим заболеванием отмечается дозозависимое высвобождение Г. При этом различают клеточную реактивность и клеточную чувствительность. Под клеточной реактивностью понимают максимальное освобождение Г. в зависимости от концентрации аллергена. Клеточная: чувствительность выражается количеством антигена, к-рое необходимо для высвобождения 50% гистамина из тучных клеток.
Тест является трудоемким; введение автоматического метода определения Г., а также употребление цельной крови вместо суспензии лейкоцитов позволит значительно упростить этот тест и сделать его более доступным для клин, лабораторий.
Библиография: Адо А. Д. Общая аллергология, М., 1970, библиогр.; Альперн Б. Аллергия, пер. с франц., М., 1973; Гущин И. С. Анафилаксия гладкой и сердечной мускулатуры, М., 1973, библиогр.; Дэгли С. и Никольсон Д. Метаболические пути, пер. с англ., с. 218, М., 1973; Успенский В. И. Гистамин, М., 1963, библиогр.; Чернух А. М. и Тимкина М. И. Динамика биоэлектрической активности терминальных сосудов брыжейки тонкого кишечника крысы под влиянием гистамина, Пат. физиол, и Эксперим, тер., т. 15, JSIa 3, с. 49, 1971, библиогр.; Goldstein Д., Aronow L. а. К a lma’n S. М. Principles of drug action, the basis of pharmacology, N. Y., 1974; G г u n J. P. Histamine, в кн. Handbook neurochem., ed. by A. Lajtha, v. 4, N. Y., 1970, bibliogr.; Histamine and antihistamines, ed.byZ. M. Bacq a. o., Oxford— N.Y., 1973; Kaliner M. a. Austen K.F. The hormonal control of the immunologic release of histamine and slow reating substance of anaphylaxis from human lung, в кн.; Cyclic nucleotides, immune responses a. tumor growths, ed. by W. Braun a. o., p. 128, N. Y., 1974; The pharmacological basis of therapeutics, ed. by L. S. Goodman a. A. Gilman, L., 1975; Stan wort h D.R. Immediate hypersensitivity, в кн.: North-Holland research monographs, Frontiers of biology, v. 28, p. 69, Amsterdam a. o., 1974; Tauber A. I. a, o. Immunologic release of histamine and slow reacting substance of anaphylaxis from human lung, J. Immunol., v. Ill, p. 27, 1973.; Орлов С. М. Высвобождение гистамина in vitro из лейкоцитов периферической крови больных с нейссериальной формой бронхиальной астмы, Иммунология, № 1, с. 90, 1980; Орлов С. М. и Шустова В. И. Тест освобождения гистамина в диагностике поллиноза, Клин, мед., т. 58, № 1, с. 88, 1980; Lichtenstein L. М. a. Osier A. G. Studies on the mechanisms of hypersensitivity phenomena, J. exp. Med., v. 120, p. 507, 1964; May Ch. a. o. Procedures for immunochemical study of histamine release from leukocytes with small volume of blood, J. Allergy, v. 46, p. 12, 1970.
Л. М. Ишимова; И. В. Комиссаров (фарм.), С. М. Орлов
^
Источник: Большая Медицинская Энциклопедия (БМЭ), под редакцией Петровского Б.В., 3-е изданиематрица судьбы статьи