РАСТВОРЫ, истинные растворы — однородные (гомогенные, однофазные) системы переменного состава из двух или более компонентов (составных частей). Роль Р. исключительно важна. В водах мирового океана, представляющего собой водный Р. многих сотен неорганических и органических веществ, зародилась жизнь на нашей планете. Воздух также является газовым Р. азота, кислорода, углекислого газа, водяных паров и инертных газов (аргоноидов). Физиол. жидкости: плазма крови, лимфа, цереброспинальная жидкость, желудочный и кишечный сок, пот, моча и др. представляют собой Р. Почти все лекарственные средства оказывают свойственное им терапевтическое действие на организм в растворенном состоянии. Многие известныехимические реакции (см.) протекают в Р, Учение о Р. является важнейшим разделом современнойфизической химии (см.).
От механических смесей Р, отличаются однородностью, от хим. соединений — переменным составом. Всякий Р. состоит из растворенных веществ и растворителя (см.Растворители). При растворении в жидкости газов или твердых веществ жидкость принято называть растворителем, а газы или твердые вещества, находящиеся в Р., растворенными веществами. В случае растворения одной жидкости в другой растворителем считают ту из них, к-рая находится в Р. в относительно большем количестве.
Классификация растворов
В зависимости от агрегатного состояния различают газообразные, жидкие и твердые Р. К газообразным Р. относятся смеси любых газов и паров, в т. ч. и освобожденный от пыли воздух. К твердым Р. относятся многие металлическиесплавы (см.), стекло, минералы.
Особое значение для медицины и медико-биол. наук имеют жидкие Р., образуемые в результате растворения газов, жидкостей или твердых веществ в жидкостях.
Состав Р. выражают концентрацией компонентов (см.Концентрация). Р. с большой концентрацией растворенного вещества называют концентрированными, с малой — разбавленными. Р., находящиеся в равновесии с избытком растворяющегося вещества, называют насыщенными. В ненасыщенных Р. концентрация растворенного вещества меньше, а в пересыщенных больше, чем в насыщенных. Р., подчиняющиеся закону Рауля (см.Рауля закон), при всех возможных концентрациях называют идеальными растворами.
По способности проводить электрический ток Р. подразделяют на Р.электролитов (см.), или ионные Р., хорошо проводящие электрический ток (к ним относятся, напр., водные растворы к-т, оснований, солей), и на Р. неэлектролитов, или молекулярные, не проводящие электрического тока (напр., растворы глюкозы, этанола и др.).
В зависимости от величины мол. веса (массы) растворенного вещества жидкие Р. делят на Р. низкомолекулярных веществ (Р. глюкозы, этанола, глицерина, обычных к-т, щелочей и солей и др.) и на Р.высокомолекулярных соединений (см.), к к-рым относятся, напр., растворы белков, полисахаридов, нуклеиновых к-т в воде, каучука в бензоле и др. Растворы высокомолекулярных соединений обладают рядом свойств, присущих типичным коллоидным дисперсиям (см.Коллоиды).
Теории растворов и механизм растворения
Известны две основные теории Р. Физическая теория, разработанная в последней четверти 19 в. Я. Вант-Гоффом и С. Аррениусом, рассматривает растворитель как химически индифферентную среду, в к-рой равномерно распределены частицы (молекулы, ионы) растворенного вещества. При этом предполагается отсутствие межмолекулярного взаимодействия как между самими частицами растворенного вещества, так и между ними и молекулами растворителя. С позиций физической теории удалось объяснить ряд свойств разбавленных Р.— понижение давления пара (см.Рауля закон), понижение температуры замерзания (см.Криометрия), повышение температуры кипения (см.Эбуллиометрия) и такое явление, какосмотическое давление (см.) Р. Эти свойства, называемые коллигативными, или осмотическими, свойствами Р., зависят только от концентрации частиц растворенного вещества, но не от их природы. Однако физическая теория оказалась несостоятельной при объяснении ряда свойств Р., особенно свойств концентрированных Р.
Химическая, или сольватная, теория Р. предложена Д. И. Менделеевым в 1887 г. Согласно этой теории, между частицами растворенного вещества и молекулами растворителя происходит взаимодействие, в результате к-рого образуются нестойкие соединения переменного состава, называемые сольватами или гидратами — в тех случаях, когда растворителем являетсявода (см.). Главную роль в образовании сольватов играют не валентные связи, а менее прочные межмолекулярные силы и водородные связи (см.Молекула). Сольватная теория дала возможность объяснить изменение ряда свойств Р. (плотности, вязкости, удельной теплоемкости и др.) с изменением их концентрации, тепловые эффекты, наблюдаемые при растворении, и др. Необходимо отметить, что физическая и химическая теории Р. не исключают, а дополняют друг друга.
Механизм растворения в общих чертах состоит в следующем. При внесении в растворитель (напр., воду) растворяемого вещества его молекулы или ионы подвергаютсягидратации (см.), отрываются от растворяемого вещества и вследствие диффузии равномерно распределяются по всему объему Р. Одновременно с растворением протекает и обратный процесс — выделение молекул или ионов из Р. и переход их в состав еще не растворившегося вещества. Скорость выделения растворенного вещества, пропорциональная его концентрации в Р., в начале процесса равна нулю, но по мере растворения вещества непрерывно возрастает. По истечении нек-рого времени скорости двух противоположно направленных процессов становятся равными друг другу. С этого момента между избытком нерастворившегося вещества и Р. устанавливается динамическое равновесие, при к-ром при неизменных внешних условиях концентрация Р., называемого в данном случае насыщенным, и количество нерастворившегося вещества остаются постоянными.
Процесс растворения сопровождается выделением или поглощением теплоты. Этот эффект растворения складывается из теплоты, необходимой для отрыва молекул или ионов от растворяемого вещества и равномерного распределения их по всему объему Р., и из теплоты гидратации (сольватации) частиц растворяемого вещества. Поскольку первый из этих процессов происходит с поглощением, а второй с выделением теплоты, тепловой эффект растворения может быть как положительным (выделение теплоты), так и отрицательным (поглощение теплоты).
Растворимость
Мерой растворимости вещества в жидкости при неизменных внешних условиях служит концентрация его насыщенного Р. Растворимость газов в жидкостях принято выражать коэффициентом поглощения, к-рый показывает, сколько объемов данного газа, приведенных к нормальным условиям (температура 0°, давление 1 атм), растворяется в одном объеме жидкости при данной температуре ипарциальном давлении (см.) газа, равном 1 атм. Растворимость также выражают массой газа, растворяющегося при постоянной температуре в единице объема жидкости.
Растворимость газов в жидкостях изменяется в широких пределах в зависимости от природы жидкости и газа, а также от давления и температуры. Так, напр., при 18° коэффициент поглощения азота равен 0, 01698, кислорода 0,03220, хлористого водорода 427,9 , аммиака 748,8. Т. к. растворимость кислорода в воде примерно вдвое больше, чем азота, то в воздухе, растворенном в воде, содержание кислорода значительно выше, чем в атмосфере (34,1% по объему при 18° вместо 21,2% в атмосфере), что имеет большое биол. значение для организмов, обитающих в воде.
Согласно закону Генри, сформулированному в 1803 г., масса газа, растворяющегося при постоянной температуре в единице объема жидкости, прямо пропорциональна парциальному давлению газа: С = К•p, где С — массовая концентрация газа в насыщенном р-ре;p — парциальное давление газа;К — коэффициент пропорциональности, называемый константой или коэффициентом Генри. Из закона Генри (см.Абсорбция) и закона Бойля—Мариот-та (см.Газы) вытекает важное следствие: объем газа, растворяющегося при постоянной температуре в единице объема жидкости, не зависит от его парциального давления. Газы следуют закону Генри при не очень высоких давлениях и только в том случае, если они химически не реагируют с растворителем. При растворении смеси газов растворимость каждого газа, согласно закону Дальтона, пропорциональна его парциальному давлению над Р. С повышением температуры растворимость газа в жидкости уменьшается. Этим свойством пользуются для удаления растворенных газов, не образующих прочных хим. соединений с растворителем. Для этого Р. кипятят в течение нек-рого времени, в результате чего газ удаляется из Р. вместе с паром. Растворимость газов в большинстве случаев сильно зависит от природы растворителя, кроме того, она значительно возрастает, если газ химически взаимодействует с растворителем. Этим объясняется высокая растворимость аммиака и хлористого водорода в воде и спирте.
При растворении в воде солей и нек-рых неэлектролитов растворимость в ней газов уменьшается в соответствии с законом И. М. Сеченова, согласно к-рому
lg(N0/N) = KC
где N0 и N — растворимость газа в чистой воде и в Р. соли соответственно, концентрация к-рой равна С; К — коэффициент пропорциональности, зависящий от природы газа, соли и растворителя и от температуры.
Растворимость жидкостей в жидкостях колеблется в широких пределах. Известны жидкости, неограниченно растворяющиеся друг в друге, напр, этанол и вода, серная к-та и вода и др. Существуют жидкости, ограниченно растворимые друг в друге. Напр., эфир растворим в воде в небольших количествах; при добавлении больших количеств эфира к воде образуются два слоя: верхний слой представляет собой насыщенный Р. воды в эфире, нижний слой является насыщенным Р. эфира в воде. Известны жидкости, практически нерастворимые друг в друге, напр, ртуть и вода, бензол и вода. С увеличением температуры взаимная растворимость ограниченно растворимых жидкостей в большинстве случаев возрастает и часто при достижении определенной для каждой пары жидкостей температуры, называемой критической температурой, жидкости полностью растворяются друг в друге. Напр., фенол и вода при 68,8° и выше растворяются друг в друге в любых пропорциях, ниже критической температуры они лишь ограниченно растворимы друг в друге. При изменении давления взаимная растворимость жидкостей меняется незначительно.
Растворимость твердых веществ в жидкостях обычно выражают в граммах твердого безводного вещества, приходящихся на 100 г растворителя в насыщенном Р. или на 100 мл насыщенного Р. В зависимости от природы твердого вещества и растворителя растворимость твердых веществ в жидкостях изменяется в крайне широких пределах. Так, напр., при 25° в 100 г воды растворяется 257 г AgNO3 и только лишь 3*10-20 г HgS. Абсолютно нерастворимые вещества неизвестны.
Полярные вещества хорошо растворимы в полярных растворителях — воде, спирте, ацетоне и др.— и плохо растворимы в неполярных жидкостях — бензоле, четыреххлористом углероде, сероуглероде и т. п. (см.Растворители). Наоборот, неполярные вещества хорошо растворимы в неполярных растворителях и плохо — в полярных.
См. такжеБуферные растворы,Газообмен,Диссоциация, в химии,Диффузия,Изотонические растворы,Изоэлектрическая точка,Ионы,Распределения закон,Электролиты.
Библиография: Киреев В. А. Краткий курс физической химии, М., 1978; Соловьев Ю. И. История учения о растворах, М., 1959; Чанг Р. Физическая химия с приложениями к биологическим системам, пер. с англ., М., 1980.
В. П. Мишин.
^
Источник: Большая Медицинская Энциклопедия (БМЭ), под редакцией Петровского Б.В., 3-е изданиематрицы судьбы значения